

Měřidla průtoků a hladin Meters of liquids and levels

ELA, spol. s r.o. Sokolova 32 619 00 Brno Tel.: +420 543 214 782 Tel.: +420 214 755 Fax: +420 543 214 755 ela@elabrno.cz www.elabrno.cz

info

type P1 – P9 for open profile

Specific Parshall flume
Czech Metrology Institute certificated
Suitable for stream, drainage, irrigation canal,
reservoir outlet, sewer system, waste-water treatment plant, etc.

Applications

Agriculture
Water treatment
Power, civil engineering
Chemical, food, pharmaceutical industry

Function descreption

measuring device of the volume flow rate with a wide variety of use measuring of flow rate with ELA ultrasonic flowmeter easy and quick installation high accuracy system reliability utility design protected

Advantages

3 x time lower head loss compared with readily available sharp-crested weir low cost investment costs easy instalation to the sewage system minimum services cost

Technical data - details:

The customer assume personal responsibility for reasonable using of sensor and control unit.

Technical conditions:

Liquids temperature 0°- 80°C Free surface of liquid flow rate Inorganic salts, acids and alkalines solutions without oxidations characters resistant Solvent organic solutions resistant Accuracy better then 4 %

Discharge equatation:

 $Q = a \cdot h_a^b \quad [m^3/s, m]$

	P1	P2	P3	P4	P5	P6	P7	P8	P9
Qnin	0,26	0,52	0,78	1,52	2,25	2,91	4,4	5,8	8,7
Q _{max}	6,22	15,1	54,6	168	368	598	898	1211	1841
h _d /h _a	0,5			0,6		0,7			
m	9	10.6	19.1	49.0	81.0	146	183	231	252
W	2.54	5.08	7.62	15.24	22.86	30.48	45.70	61.00	91.4
B ,	30.0	34.0	39.0	53.0	75.0	120.0	130.0	135.0	150.0
С	9.29	13.49	17.80	39.4	38.1	61.0	76.2	91.44	121.9
D	16.75	21.35	25.88	39.69	57.47	84.46	102.6	120.7	157.2
E	23	26.4	46.7	62.0	80	92.5	92.5	92.5	92.5
L	63.5	77.5	91.5	152.4	1626	286.7	294.3	301.9	3169
O1	2,8	4,2	5,7	11,5	11,5	10	10	10	10
02	4,6	6,4	8,2	19,1	19,1	17,6			
S	20	20	20	20	20	20	20	20	20
U	24.8	28.6	49.2	69.6	87.6	100.1	100.1	100.1	100.1
V	30.7	35.35	39.9	54.0	80	100	120	140	180

Data description

 $\begin{array}{lll} m & \text{weight of flume (kg)} \\ h_d/h & \text{ratio of water submergance (-)} \\ h & \text{water depth measured at the distance B' in front of the throat (m)} \\ h_d & \text{water depth behind the flume (m)} \\ W & \text{windth of the throat (cm)} \\ B' - V & \text{dimensions of flume (see pic.) (cm)} \\ Z & \text{deviation (probability 95 \%) for Qmin, Qmax (-)} \\ Q & \text{flow water } (m^3/s) \\ \end{array}$